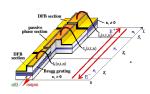


Photonic crystals for planar laser sources: new functionalities and outlook

A. Monmayrant, A. Larrue, J. Campos,

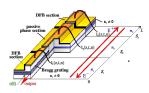
O. Gauthier-Lafaye, S. Bonnefont, F. Lozes-Dupuy

October 12, 2010


Photonics Group, CNRS-LAAS, Toulouse

Introduction

Good old distributed feedback laser



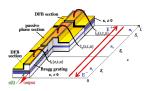
Introduction

 λ control

Good old distributed feedback laser

DFB are cutting edge but:

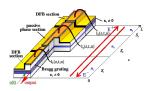
• Inherently dual-mode


PhC DFB

 λ control

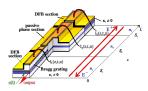
Q control

Good old distributed feedback laser


- Inherently dual-mode
- Wavelength engineering is hard

PhC DFB Introduction λ control

Q control


Good old distributed feedback laser

- Inherently dual-mode
- Wavelength engineering is hard
- Integration in array still a challenge

Good old distributed feedback laser

- Inherently dual-mode
- · Wavelength engineering is hard
- Integration in array still a challenge
- Beware of optical feedback

Introduction

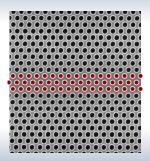
Conclu

Menu

- 1 Introduction
- 2 Photonic crystal waveguide for single-mode DFB laser
- 3 Wavelength control using affine deformation
- 4 Double deformation for Q control
- **5** Conclusion

The waveguide we use ...

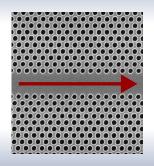
The waveguide we use ...



W3 ΓK PhC defect waveguide

Hexagonal lattice Photonic Crystal

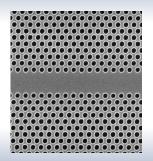
The waveguide we use ...



W3 FK PhC defect waveguide

- Hexagonal lattice Photonic Crystal
- 3 rows of holes missing

The waveguide we use ...



W3 **FK** PhC defect waveguide

- Hexagonal lattice Photonic Crystal
- 3 rows of holes missing in ΓK direction

The waveguide we use ...

W3 ΓK PhC defect waveguide

- Hexagonal lattice Photonic Crystal
- 3 rows of holes missing in ΓK direction

Guiding and DFB properties?

The waveguide we use ...

W3 \(\Gamma K\) PhC defect waveguide

- Hexagonal lattice Photonic Crystal
- 3 rows of holes missing in ΓK direction

Guiding and DFB properties:

 band diagram from PWEM (mpb from MIT)

The waveguide we use ...

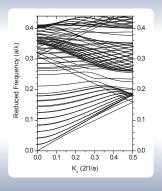
W3 \(\Gamma K\) PhC defect waveguide

- Hexagonal lattice Photonic Crystal
- 3 rows of holes missing in ΓK direction

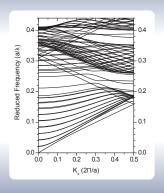
Guiding and DFB properties:

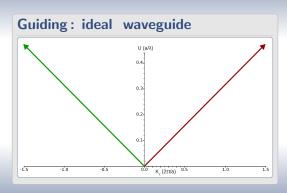
- band diagram from PWEM (mpb from MIT)
- infinitely long waveguide (periodic boundary conditions)

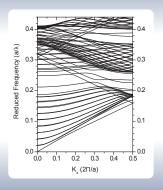
The waveguide we use ...

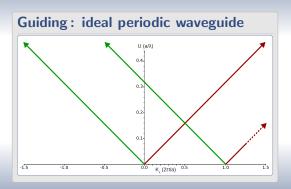

W3 FK PhC defect waveguide

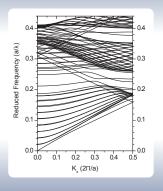
- Hexagonal lattice Photonic Crystal
- 3 rows of holes missing in ΓK direction

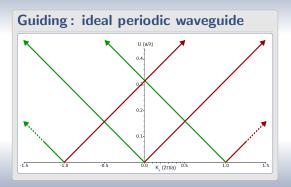

Guiding and DFB properties:

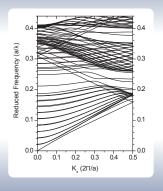

- band diagram from PWEM (mpb from MIT)
- infinitely long waveguide (periodic boundary conditions)
- $n_{eff} \simeq 3.27$ / hole filling factor $\simeq 0.25$

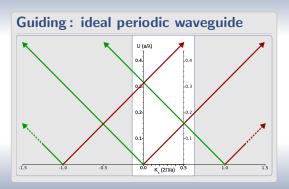

W3 ΓK band diagram

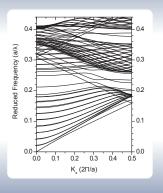


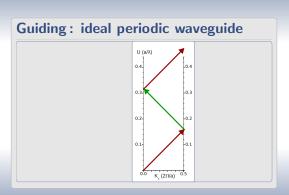

Guiding?

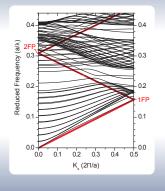


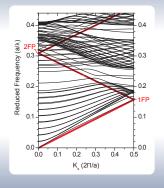


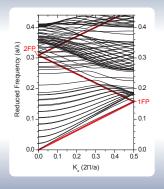




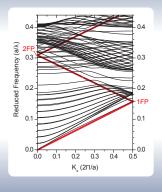




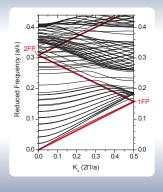




Guiding: W3 ΓK

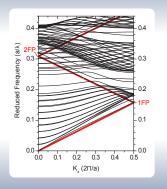

Guiding: W3 ΓK

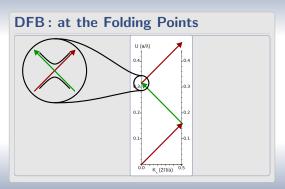
• W3 ΓK acts like a waveguide

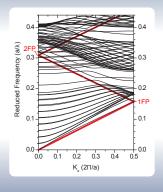


Guiding: W3 ΓK

- W3 ΓK acts like a waveguide
- Magic occurs at the Folding Points (1FP, 2FP, ...)

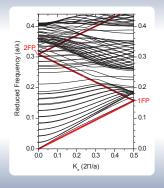



DFB?

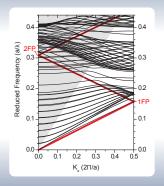


DFB: at the Folding Points

Coupling of counterpropagative waves

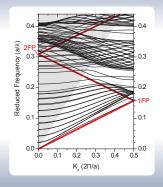


DFB: at the Folding Points


Coupling of counterpropagative waves

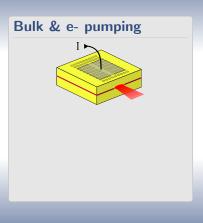
DFB: at the Folding Points

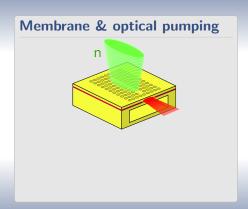
- Coupling of counterpropagative waves
- Two degenerated DFB modes^a ...


^aX. Checoury et al, APL 85, p5502, 2004

DFB: at the Folding Points

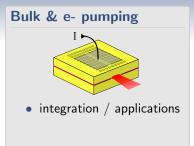
- Coupling of counterpropagative waves
- Two degenerated DFB modes^a ...
- ... but single mode DFB at the 2FP^b (above light cone & symmetry)

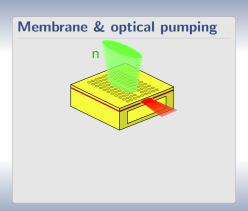

^aX. Checoury et al, APL 85, p5502, 2004 ^bR. Kazarinov et al, JQE, 21, p144, 1985



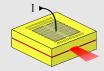
DFB: at the Folding Points

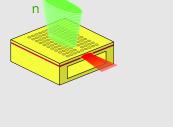
- Coupling of counterpropagative waves
- Two degenerated DFB modes^a ...
- ... but single mode DFB at the 2FP^b
 (above light cone & symmetry)
- $\lambda \simeq 1000$ nm, $a \simeq 300$ nm, $r \simeq 80$ nm
- ^aX. Checoury et al, APL 85, p5502, 2004
- ^bR. Kazarinov et al, JQE, 21, p144, 1985


In practice: experimental demonstration



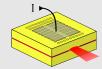
In practice: experimental demonstration




In practice: experimental demonstration

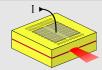
Bulk & e- pumping

- integration / applications
- deep etching:


Membrane & optical pumping

In practice: experimental demonstration

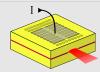
Bulk & e- pumping


- integration / applications
- deep etching:
- ... time consuming

Membrane & optical pumping

In practice: experimental demonstration

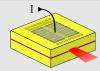
Bulk & e- pumping


- integration / applications
- deep etching:
- ... time consuming
- ... open problem on GaAs

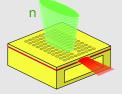
Membrane & optical pumping

In practice: experimental demonstration

Bulk & e- pumping


- integration / applications
- deep etching:
- ... time consuming
- ... open problem on GaAs

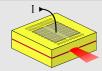
Membrane & optical pumping fast and easy


In practice: experimental demonstration

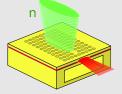
Bulk & e- pumping

- integration / applications
- deep etching:
- ... time consuming
- ... open problem on GaAs

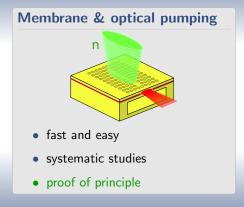
Membrane & optical pumping



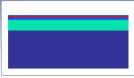
- fast and easy
- systematic studies


In practice: experimental demonstration

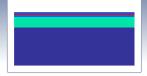
Bulk & e- pumping

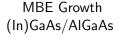

- integration / applications
- deep etching:
- ... time consuming
- ... open problem on GaAs

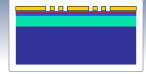
Membrane & optical pumping


- fast and easy
- systematic studies
- proof of principle

In practice: experimental demonstration







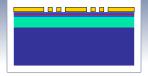
MBE Growth (In)GaAs/AlGaAs

Resist spin coating & e-beam

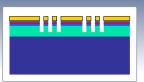

Membrane Fabrication: 5 steps

MBE Growth (In)GaAs/AlGaAs

Resist spin coating & e-beam



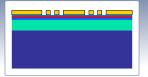
PhC etching (ICP Cl_2/N_2)



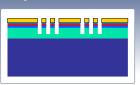
MBE Growth (In)GaAs/AlGaAs

Resist spin coating & e-beam

PhC etching (ICP Cl_2/N_2)



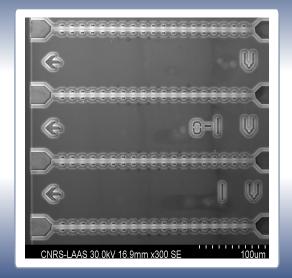
Membrane freeing (HF etching)



MBE Growth (In)GaAs/AlGaAs

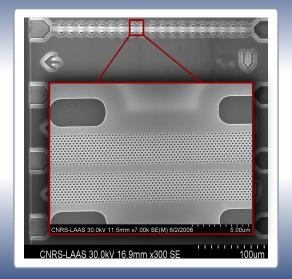
Resist spin coating & e-beam

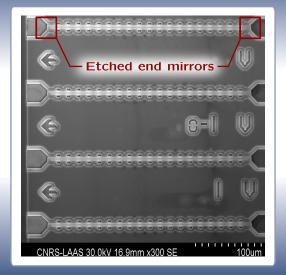
PhC etching (ICP Cl_2/N_2)



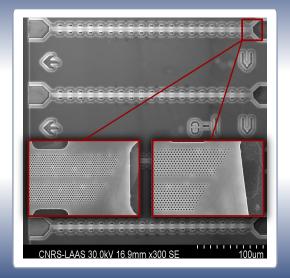
Membrane freeing (HF etching)

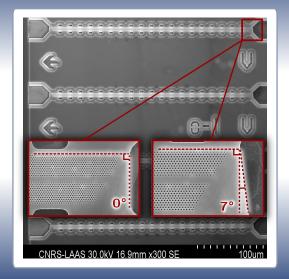
Thinning & Cleavage

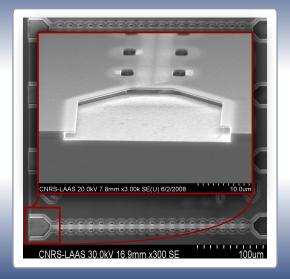

Conclu

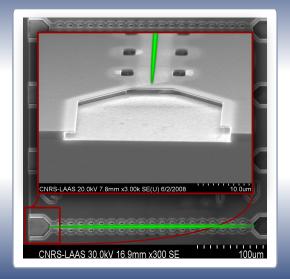


Photonic crystal waveguide for single-mode DFB laser

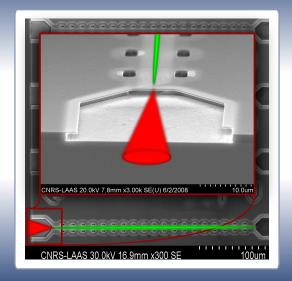




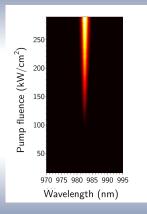

Conclu

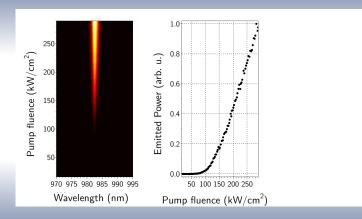

PhC DFB laser on a membrane

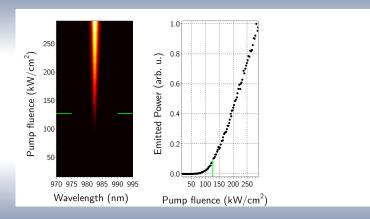
Conclu

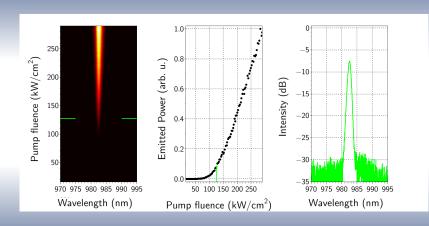


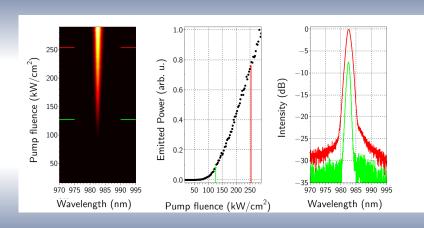
PhC DFB laser on a membrane

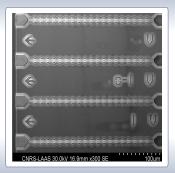



Conclu

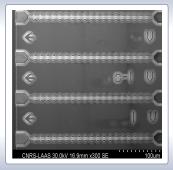








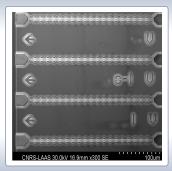
W3 ΓK waveguide laser:



Let's sum it up!

Conclu

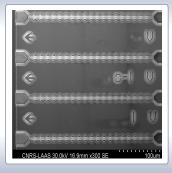
W3 ΓK waveguide laser:



Let's sum it up!

• Inherently single-mode DFB lasing

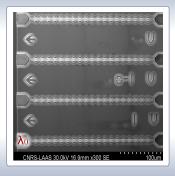
W3 ΓK waveguide laser:



Let's sum it up!

- Inherently single-mode DFB lasing
- No mode-hoping, low chirp

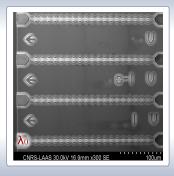
W3 ΓK waveguide laser:



Let's sum it up!

- Inherently single-mode DFB lasing
- No mode-hoping, low chirp
- 2D PhC allows for array integration

W3 ΓK waveguide laser:


Let's sum it up!

- Inherently single-mode DFB lasing
- No mode-hoping, low chirp
- 2D PhC allows for array integration

Wavelength engineering?

W3 ΓK waveguide laser:

Let's sum it up!

- Inherently single-mode DFB lasing
- No mode-hoping, low chirp
- 2D PhC allows for array integration

Wavelength engineering?

• Integrated array of DFB lasers

W3 ΓK waveguide laser:

Let's sum it up!

- Inherently single-mode DFB lasing
- No mode-hoping, low chirp
- 2D PhC allows for array integration

Wavelength engineering?

- Integrated array of DFB lasers
- Fine and controlled λ spacing

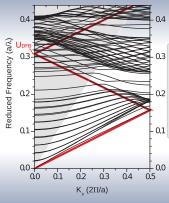
 $Wavelength\ control\ using\ affine\ deformation$

λ control through lattice constant

Maxwell to the rescue!

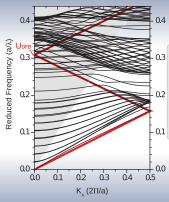
Wavelength control using affine deformation

λ control through lattice constant



Maxwell to the rescue!

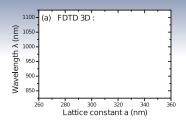
• Maxwell's equations are scale invariant


Wavelength control using affine deformation

λ control through lattice constant

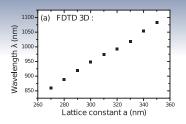
Maxwell to the rescue!

- Maxwell's equations are scale invariant
- Reduced frequency $U_{DFB} = a/\lambda_{DFB}$

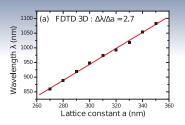

Maxwell to the rescue!

- Maxwell's equations are scale invariant
- Reduced frequency $U_{DFB} = a/\lambda_{DFB}$
- Scaling $a \Rightarrow Scaling \lambda$

λ control through lattice constant

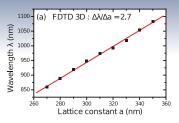

Numerically

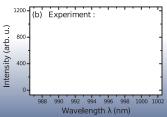
Experimentally


Numerically

• Finite Difference in Time Domain

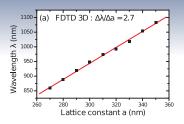
Numerically

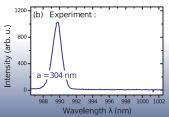

- Finite Difference in Time Domain
- Linear control of λ with a



Numerically

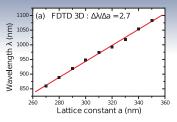
- Finite Difference in Time Domain
- Linear control of λ with a
- $\Delta a = 1 \text{ nm} \Rightarrow \Delta \lambda \simeq 2.7 \text{ nm}$

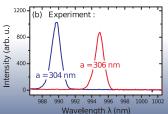

Numerically


- Finite Difference in Time Domain
- Linear control of λ with a
- $\Delta a = 1 \text{ nm} \Rightarrow \Delta \lambda \simeq 2.7 \text{ nm}$

Experimentally

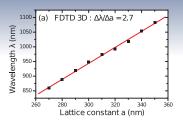
• Array of DFB with varying a

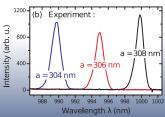

Numerically


- Finite Difference in Time Domain
- Linear control of λ with a
- $\Delta a = 1 \text{ nm} \Rightarrow \Delta \lambda \simeq 2.7 \text{ nm}$

- Array of DFB with varying a
- ... from $a = 304 \, \text{nm}$

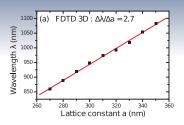
λ control through lattice constant

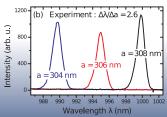



Numerically

- Finite Difference in Time Domain
- Linear control of λ with a
- $\Delta a = 1 \text{ nm} \Rightarrow \Delta \lambda \simeq 2.7 \text{ nm}$

- Array of DFB with varying a
- ... from $a = 304 \, \text{nm}$


Numerically


- Finite Difference in Time Domain
- Linear control of λ with a
- $\Delta a = 1 \, \text{nm} \Rightarrow \Delta \lambda \simeq 2.7 \, \text{nm}$

- Array of DFB with varying a
- ... from $a = 304 \,\mathrm{nm}$ to $a = 308 \,\mathrm{nm}$

λ control through lattice constant

Numerically

- Finite Difference in Time Domain
- Linear control of λ with a
- $\Delta a = 1 \text{ nm} \Rightarrow \Delta \lambda \simeq 2.7 \text{ nm}$

- Array of DFB with varying a
- ... from $a = 304 \, \text{nm}$ to $a = 308 \, \text{nm}$
- $\Delta a = 1 \, \text{nm} \Rightarrow \Delta \lambda \simeq 2.6 \, \text{nm}$

λ control through lattice constant

It does work well

λ control through lattice constant

It does work well

Smooth and linear control

λ control through lattice constant

It does not work well enough

Smooth and linear control

λ control through lattice constant

It does not work well enough

- Smooth and linear control
- Sensitivity of $\Delta \lambda/\Delta a \simeq 3$: too coarse

λ control through lattice constant

It does not work well enough

- Smooth and linear control
- Sensitivity of $\Delta \lambda / \Delta a \simeq 3$: too coarse
- e-beam lithography: $\delta a > 1 \, \text{nm} \Rightarrow \delta \lambda > 3 \, \text{nm}$

λ control through lattice constant

It does not work well enough

- Smooth and linear control
- Sensitivity of $\Delta \lambda / \Delta a \simeq 3$: too coarse
- e-beam lithography: $\delta a > 1 \, \text{nm} \Rightarrow \delta \lambda > 3 \, \text{nm}$
- No sub-1 nm wavelength spacing : no dense array

Wavelength control using affine deformation

λ control through lattice constant

It does not work well enough

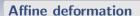
- Smooth and linear control
- Sensitivity of $\Delta \lambda / \Delta a \simeq 3$: too coarse
- e-beam lithography: $\delta a > 1 \, \text{nm} \Rightarrow \delta \lambda > 3 \, \text{nm}$
- No sub-1 nm wavelength spacing : no dense array

How to build dense array of single-mode DFB?

λ control through lattice constant

It does not work well enough

- Smooth and linear control
- Sensitivity of $\Delta \lambda / \Delta a \simeq 3$: too coarse
- e-beam lithography: $\delta a > 1 \text{ nm} \Rightarrow \delta \lambda > 3 \text{ nm}$
- No sub-1 nm wavelength spacing : no dense array


How to build dense array of single-mode DFB?

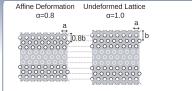
Hint: 2D PhC are 2D!

What is affine deformation?

Undeformed Lattice $\alpha=1.0$

What is affine deformation?

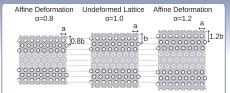
Undeformed Lattice α=1.0



Affine deformation

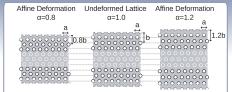
Scale ⊥ lattice constant b

What is affine deformation?

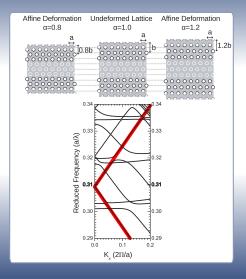

Affine deformation

Scale ⊥ lattice constant b

Affine deformation

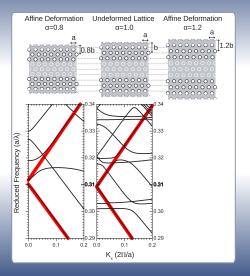

• Scale \perp lattice constant b

- Scale ⊥ lattice constant b
- α is the deformation


What is affine deformation?

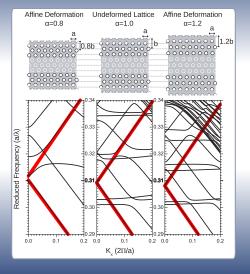
- Scale ⊥ lattice constant b
- α is the deformation
- $d = (\alpha 1)b$ is the displacement

Wavelength control using affine deformation


What is affine deformation?

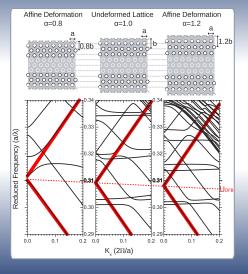
- Scale ⊥ lattice constant b
- α is the **deformation**
- $d = (\alpha 1)b$ is the displacement

Wavelength control using affine deformation


What is affine deformation?

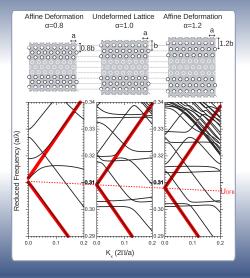
- Scale ⊥ lattice constant b
- α is the deformation
- $d = (\alpha 1)b$ is the displacement

What is affine deformation?



- Scale ⊥ lattice constant b
- α is the **deformation**
- $d = (\alpha 1)b$ is the displacement

What is affine deformation?

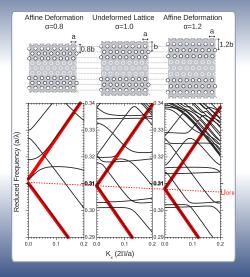

 $(\lambda \text{ control})$

- Scale ⊥ lattice constant b
- α is the deformation
- $d = (\alpha 1)b$ is the displacement
- U_{DFB} linear in α , d

Wavelength control using affine deformation

What is affine deformation?

Affine deformation


- Scale ⊥ lattice constant b
- α is the **deformation**
- $d = (\alpha 1)b$ is the displacement
- U_{DFB} linear in α , d

Sensitivity (theory)

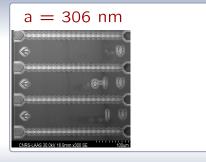
• $\Delta \lambda / \Delta d \simeq 0.035$

What is affine deformation?

Affine deformation

- Scale ⊥ lattice constant b
- α is the **deformation**
- $d = (\alpha 1)b$ is the displacement
- U_{DFB} linear in α , d

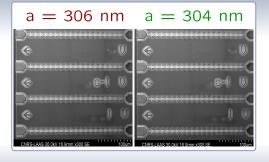
Sensitivity (theory)


- $\Delta \lambda / \Delta d \simeq 0.035$
- 100× improvement!

Sample

• Several DFB arrays

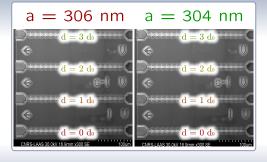
Affine deformation: experimentally



Sample

• Several DFB arrays a = 306

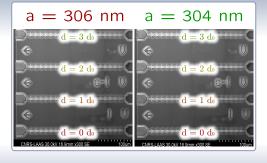
Affine deformation: experimentally



Sample

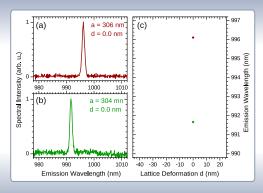
• Several DFB arrays a = 306 & 304 nm

Affine deformation: experimentally

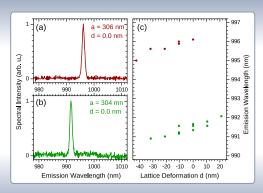


Sample

- Several DFB arrays a = 306 & 304 nm
- / displacement d

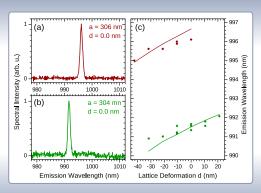


Affine deformation: experimentally


Sample

- Several DFB arrays a = 306 & 304 nm
- / displacement d
- Spectrum $\Rightarrow \lambda(d)$

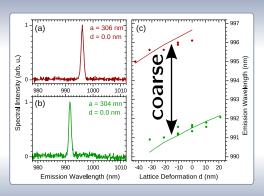
Results


A. Larrue et al, PTL, 20, pp. 2120, 2008

A. Larrue et al, PTL, 20, pp. 2120, 2008

Results

• Fairly linear control

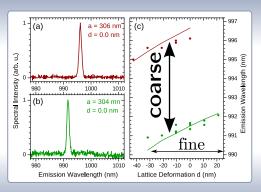


A. Larrue et al, PTL, 20, pp. 2120, 2008

Results

- Fairly linear control
- $\Delta \lambda / \Delta d \simeq 0.025$

Affine deformation: experimentally



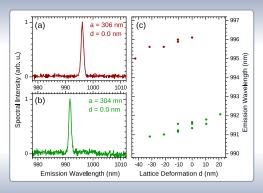
A. Larrue et al, PTL, 20, pp. 2120, 2008

Results

- Fairly linear control
- $\Delta \lambda / \Delta d \simeq 0.025$
- a for coarse control

Affine deformation: experimentally

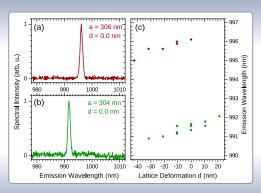
A. Larrue et al, PTL, 20, pp. 2120, 2008


Results

- Fairly linear control
- $\Delta \lambda / \Delta d \simeq 0.025$
- a for coarse control
- d for fine control

Wavelength control using affine deformation

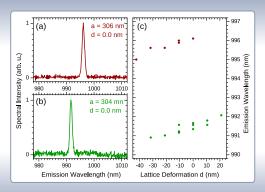
Affine deformation: experimentally


Nice results but ...

A. Larrue et al, PTL, 20, pp. 2120, 2008

Wavelength control using affine deformation

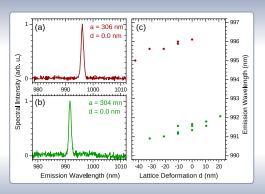
Affine deformation: experimentally


A. Larrue et al, PTL, 20, pp. 2120, 2008

Nice results but ...

• Random λ shift

Affine deformation: experimentally


A. Larrue et al, PTL, 20, pp. 2120, 2008

Nice results but ...

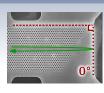
- Random λ shift
- Other lasing modes

Affine deformation: experimentally

A. Larrue et al, PTL, 20, pp. 2120, 2008

Nice results but ...

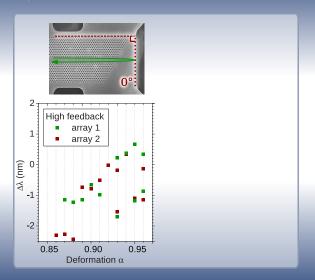
- Random λ shift
- Other lasing modes
- ... optical feedback!


Wavelength control using affine deformation

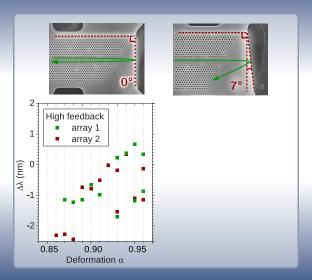
Optical feedback is to blame

© .84 W C .94 W C .1 W

Optical feedback is to blame

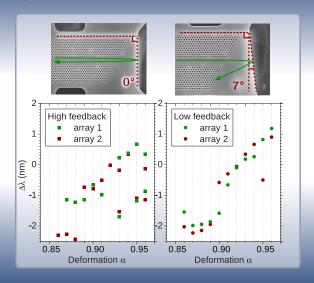

Wavelength control using affine deformation

Intro


Optical feedback is to blame

Conclu

Optical feedback is to blame



Conclu

Intro

Wavelength control using affine deformation

Optical feedback is to blame

How to deal with optical feedback

Tools and recipes

• Reduce feedback to minimum (end mirror engineering)

Wavelength control using affine deformation

How to deal with optical feedback

Tools and recipes

Reduce feedback to minimum (end mirror engineering)

Wavelength control using affine deformation

How to deal with optical feedback

Tools and recipes

- Reduce feedback to minimum (end mirror engineering)
- Increase DBF robustness towards feedback

Tools and recipes

- Reduce feedback to minimum (end mirror engineering)
- Increase DBF robustness towards feedback
 - Improve Q_1 (Q factor of best DFB mode)

Tools and recipes

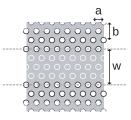
- Reduce feedback to minimum (end mirror engineering)
- Increase DBF robustness towards feedback
 - Improve Q_1 (Q factor of best DFB mode)
 - Improve $\Delta Q = Q_1 Q_2$ (mode selectivity)

How to deal with optical feedback

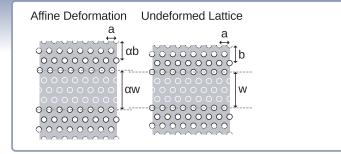
Tools and recipes

- Reduce feedback to minimum (end mirror engineering)
- Increase DBF robustness towards feedback
 - Improve Q1 (Q factor of best DFB mode)
 - Improve $\Delta Q = Q_1 Q_2$ (mode selectivity)

Affine deformation is not enough

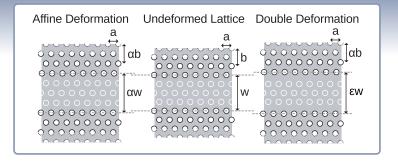

1 handle (α) for 2 controls (λ and Q)

Double deformation: two handles


Undeformed Lattice

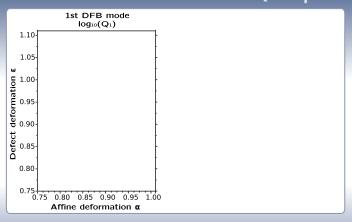
Q control

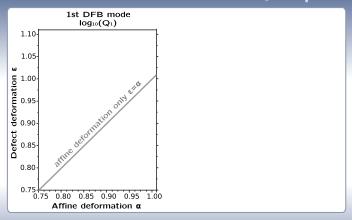
Double deformation: two handles


Affine deformation

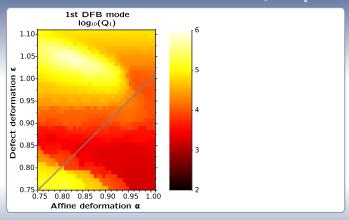
 \perp lattice constant **b** and defect width **w** scaled by α

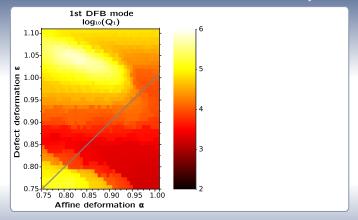
Q control


Double deformation: two handles


Double deformation

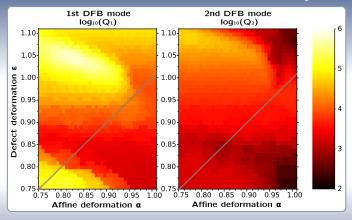
 \perp lattice constant b scaled by α defect width w scaled independently by ε





(Q control)

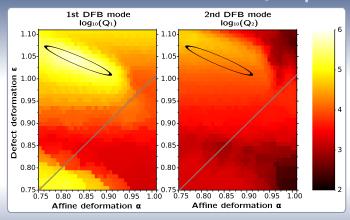
Double deformation: 2D Q maps


Q factor improvement

 $Q_1 \simeq 6.7 \ 10^5$: two order of magnitude better

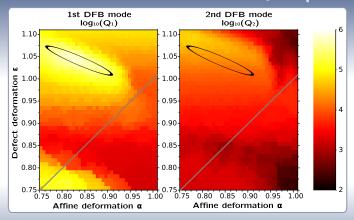
(Q control)

Double deformation: 2D Q maps



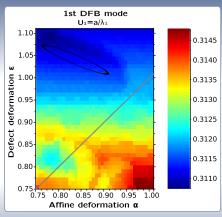
Q factor improvement

 $Q_1 \simeq 6.7 \ 10^5$: two order of magnitude better



Q control

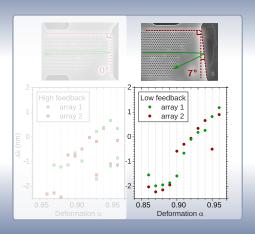
Double deformation: 2D Q maps



Mode selectivity improvement

 $\Delta Q > 2.4 \ 10^4$: one order of magnitude better

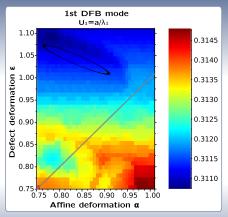
Double deformation: 2D U map


Conclu

Intro

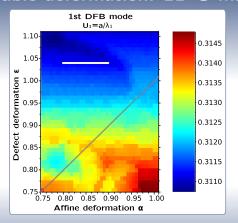
Double deformation: 2D U map

Remember affine deformation?



Conclu

Double deformation: 2D U map


U control improvement

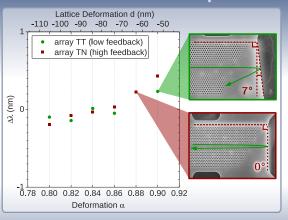
Slow variation and no mode-hoping

(Q control)

Intro

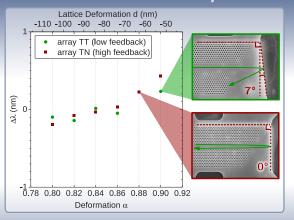
Double deformation: 2D U map

Experimental demonstration


 $\varepsilon = 1.04$ and α in [0.8, 0.9]

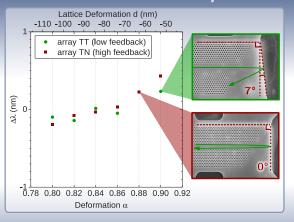
Intro

Double deformation for ${\sf Q}$ control


Double deformation: experimentally

Double deformation: experimentally

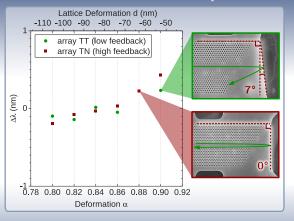
(Q control)


Robustness towards optical feedback

 $\Delta \lambda < 0.2 \, \text{nm}$: tenfold improvement

Double deformation: experimentally

(Q control)



Robustness towards optical feedback No mode hoping, all single-mode lasers

Intro

Double deformation: experimentally

Improved λ control

Sensitivity $\Delta \lambda/\Delta d \simeq 0.009~3 \times improvement$

PhC DFB Conclusion λ control

Conclusion 1/3

2D Photonic Crystal for DFB array

Powerful and versatile tool

 λ control

Conclusion 1/3

2D Photonic Crystal for DFB array

- Powerful and versatile tool
- ullet Coarse, fine and finer λ control

 λ control

Conclusion 1/3

2D Photonic Crystal for DFB array

- Powerful and versatile tool
- ullet Coarse, fine and finer λ control
- High robustness towards feedback

2D Photonic Crystal for DFB array

- Powerful and versatile tool
- ullet Coarse, fine and finer λ control
- High robustness towards feedback

BUT ... proof of principle!

 λ control

Conclusion 1/3

2D Photonic Crystal for DFB array

- Powerful and versatile tool
- ullet Coarse, fine and finer λ control
- High robustness towards feedback

BUT ... proof of principle!

• We're on a membrane

 λ control

Conclusion 1/3

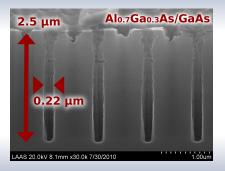
2D Photonic Crystal for DFB array

- Powerful and versatile tool
- ullet Coarse, fine and finer λ control
- High robustness towards feedback

BUT ... proof of principle!

- We're on a membrane
- Integration / electrical pumping?

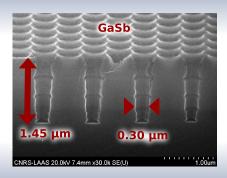
2D Photonic Crystal for DFB array


- Powerful and versatile tool
- ullet Coarse, fine and finer λ control
- High robustness towards feedback

BUT ... proof of principle!

- We're on a membrane
- Integration / electrical pumping
 ⇒ deep etching!


Deep etching of GaAs/GaAlAs



Conclusion

Deep etching of GaAs/GaAlAs & GaSb

2D Photonic Crystal for DFB array

- Powerful and versatile tool
- ullet Coarse, fine and finer λ control
- High robustness towards feedback

Towards bulk e- pumping

2D Photonic Crystal for DFB array

- Powerful and versatile tool
- ullet Coarse, fine and finer λ control
- High robustness towards feedback

Towards bulk e- pumping

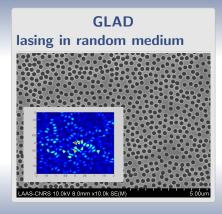
Proof of principle (brick 1)

2D Photonic Crystal for DFB array

- Powerful and versatile tool
- ullet Coarse, fine and finer λ control
- High robustness towards feedback

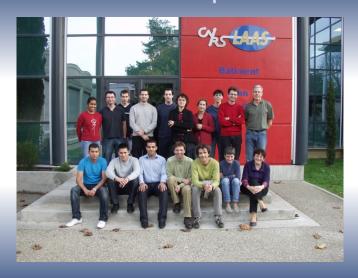
Towards bulk e- pumping

- Proof of principle (brick 1)
- Deep etching (brick 2)


2D Photonic Crystal for DFB array

- Powerful and versatile tool
- ullet Coarse, fine and finer λ control
- High robustness towards feedback

Towards bulk e- pumping


- Proof of principle (brick 1)
- Deep etching (brick 2)
- Simply merge the two!

Conclusion 3/3: beyond DFB

The Photonics Group

The Photonics Group

Intro

Shameless advertising

Looking for post-doc!

Post-doc position starting January 2011

Optical sensor for undersea detection of methane

Contact: lozes@laas.fr (or come and see me)